The effects of multiple infections on the host–parasite relationship between bluegill sunfish (Lepomis macrochirus) and parasitic glochidial larvae of the freshwater mussel Utterbackia imbecillis were examined. Naïve, young-of-the-year bluegills were infected with glochidia and placed in individual observation chambers. Each day, water was drained from each chamber and the numbers of dead glochidia, live glochidia, partially metamorphosed glochidia, and fully metamorphosed juvenile mussels were counted. The same fishes were infected a total of 4 times. After 2 infections, the fish began to exhibit evidence of acquired resistance to glochidia. During the third and fourth infections, this resistance was clearly evidenced by the marked increase in the percentage of dead and live glochidia shed during the first 5 days of the infection and by the significant decrease in the success of metamorphosis. The total number of glochidia that successfully attached to the fish decreased significantly during the fourth infection relative to the first. The number of larvae attached to the host fish was positively correlated with the size of the fish during the first infection but was negatively correlated during all subsequent infections. Variance to mean ratios indicated that larvae were aggregated among host fishes during the infections. This study has important implications in propagation and conservation efforts of this endangered group of organisms.